Factorials With Decimals

Recently in Math class I started wondering what would happen if factorials decreased by decimal values instead of by one. So I decided to make a handy-dandy decimal stepping factorial calculator.

Background On Factorials

To find the factorial of any positive integer N, multiply it by each integer less than N and greater than zero.

Example: 5! = 5 × 4 × 3 × 2 × 1 = 120

More generally: N! = N × (N - 1) × (N - 2) × (N - 3)... × 1

Stepping By Decimals

Let's define a new operation we'll call the step factorial. For starting number N and stepping number s:

N!s = N x (N - s) x (N - 2s) x (N - 3s)... x 1


Output: 120


Is this useful? Honestly, probably not. I wouldn't be surprised if somebody has done this before. Still, it was a fun little exercise. It's interesting how small changes in s can cause such dramatic shifts in results — play around and see what happens!

Back to Blog Index